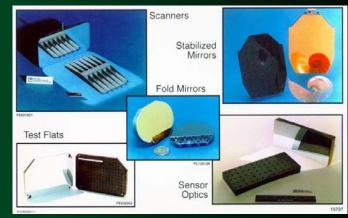
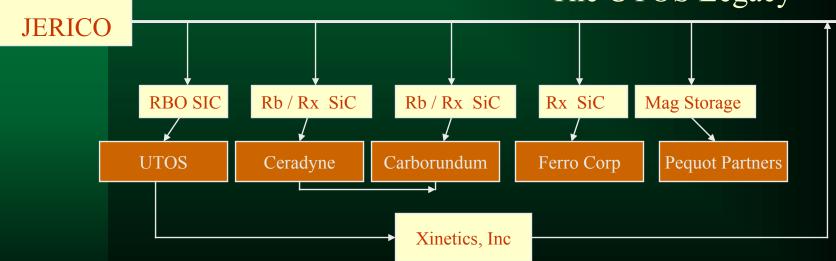


Large Low Temperature Silicon Carbide Mirrors Mark A. Ealey



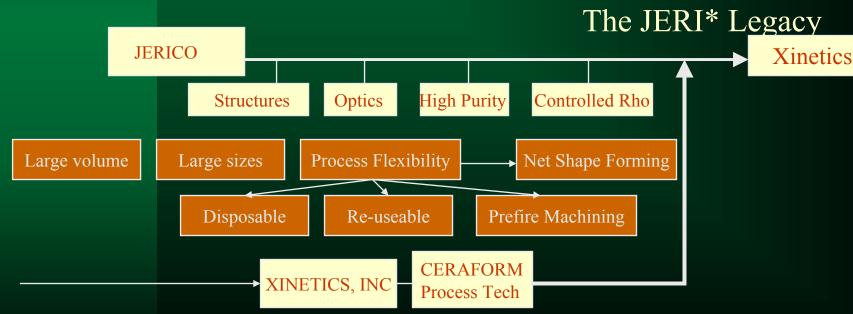
Silicon Carbide Optics and Structures


... Xinetics Purchases UTOS Technology in 1995

Legacy

- Jeri* formed in 1981 SiC
 Materials & Structures Specialty
- UTOS began in 1982 Optics Specialty

The UTOS Legacy

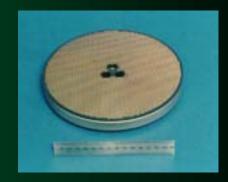


Silicon Carbide Optics and Structures Xinetics Purchases JERI* in 2000

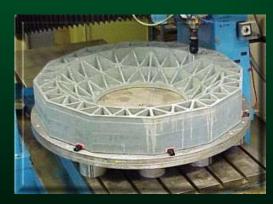
Legacy

 Jerico SiC technology combined with Xinetics'
 / UTOS SiC technology

Silicon Carbide Optical Structures


... Near Net Shape with Integral Interface Features

Small & Large SiC Polishing Laps


15-cm All Silicon Carbide Telescope Structure

300-mm Silicon Carbide Vacuum Chuck

37-Inch IFX RCIS
First Article
Xingtics Inc.

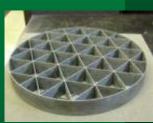
52-Inch ALPHA BCIS First Article

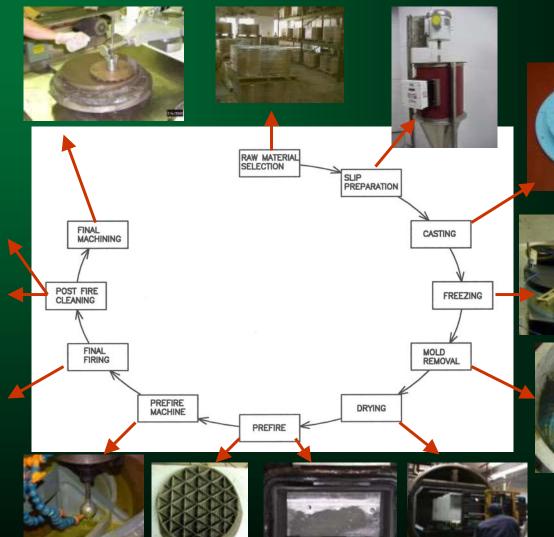
36-Inch ALPHA BCIS First Article

Program Goals

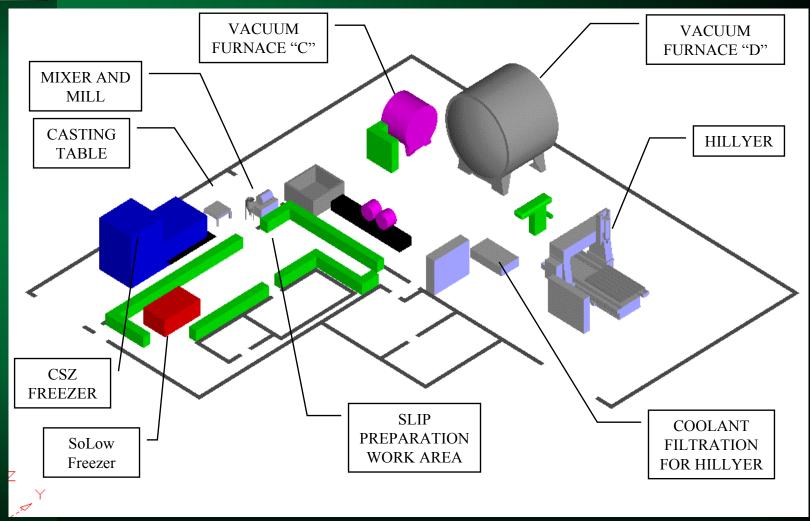
Program Goals

- ♦ Develop Polishing Process for Both Bare and Silicon Clad Reaction Bonded SiC
- ♦ Evaluate Polishing Vendors
- ♦ Scale Ceraform Process to 0.5m polishable optics with areal density ~ 10kg/m²
- ◆ Develop Ceracore Ultralightweight SiC Processing to Produce <10kg/m² polishable optics</p>
- Plan for Scaling of Optics to 1 meter class and beyond


CERAFORM Process


Xinetics Critical Facilities and Equipment

... 1.7-m SiC Fabrication Demonstrated



Xinetics 2-Meter Facility Layout

Xinetics Critical Facilities and Equipment for 2-Meter SiC Fabrication

SiC Power Inventory

Slip Preparation

Slip Preparation

Large Vacuum Furnace

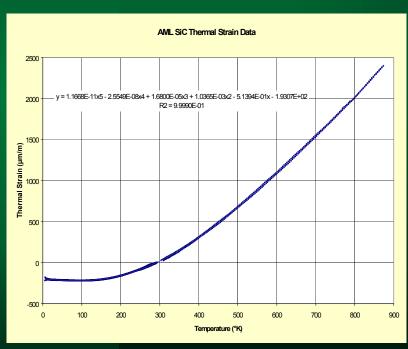
CNC Machining and Inspection

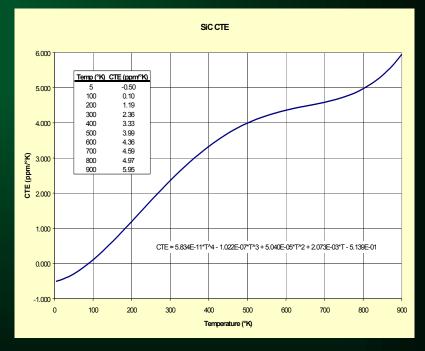
Cleaning and Finishing

Design Trades

Material Property Comparison

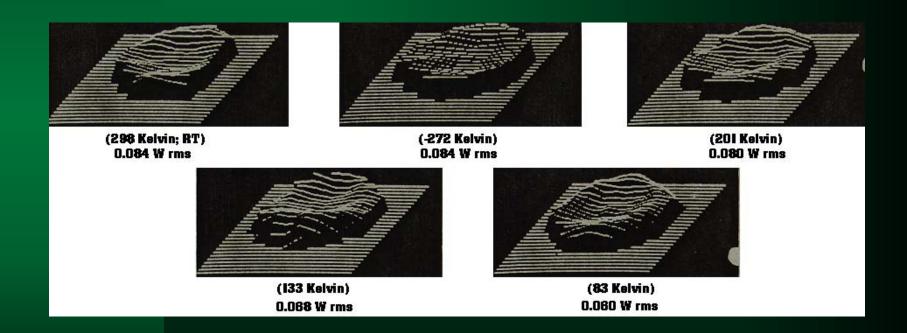
SiC offers advantages structurally and thermally

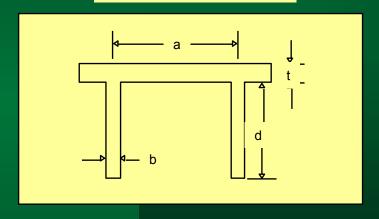

		Ве	Ceraform SiC	ULE	Al
Elastic Modulus	Msi	44	45	9.8	9.9
Density	g/cm^3	1.85	2.95	2.21	2.71
Coefficient of Thermal Expansion	ppm/*C	11.4	2.44	0.03	22.7
CTE Uniformity	ppb/*C	100	30	10	100
Thermal Conductivity	W/m *C	180	156	1.31	155
Specific Heat	J/Kg *C	1925	670	766	879
Thermal Diffusivity	m^2/s	0.607	0.870	0.008	0.653
Mircoyield	Ksi	5.0	NONE	3.5	18.0
Density/Modulus	g/KNm	0.0061	0.0095	0.0327	0.0397
CTE/Diffusivity	s/m^2 *C	18.8	2.8	3.8	34.8

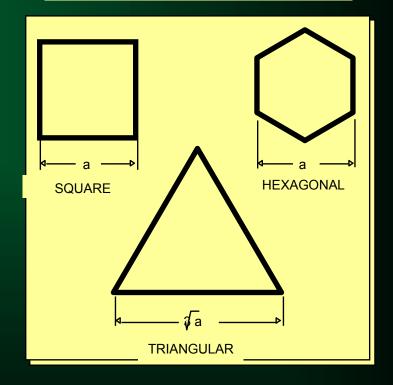


Thermal Response of Xinetics Optical Grade SiC 5°K to 873°K

Thermal Strain Data


Coefficient of thermal Expansion


Historical Cryogenic Data on SiC 298 Kelvin to 83 Kelvin



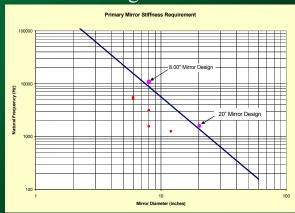
Core Feature Design & Manufacturing Options

CORE CROSS SECTION

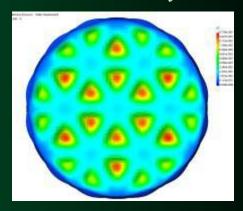
MIRROR CORE GEOMETRY OPTIONS

Lightweight Mirror Core Parameters

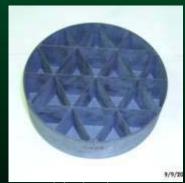
	Length of Side	Area of Cell	Core Volume per Cell	Face Volume per Cell	Equivalent Weight Thickness
Hexagonal	$\frac{\phi}{\sqrt{3}}$	$\frac{\sqrt{3}\phi^2}{2}$	$\sqrt{3}\phi \ t_c h_c$	$rac{\sqrt{3}\phi^2}{2}t_f$	$2\frac{t_c h_c}{\phi} + t_f$
Square	ϕ	ϕ^2	$2\phi t_c h_c$	$oldsymbol{\phi}^2 t_f$	$2\frac{t_c h_c}{\phi} + t_f$
Triangular	$\sqrt{3}\phi$	$\frac{3\sqrt{3}}{4}\phi^2$	$\frac{3\sqrt{3}}{2}\phi \ t_c h_c$	$\frac{3\sqrt{3}}{4}\phi^2t_f$	$2\frac{t_c h_c}{\phi} + t_f$


NASA 50-cm Open Back Mirror

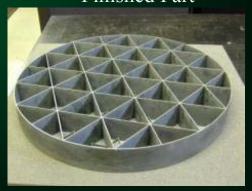
... Demonstrates Cathedral Ribs & Low Print Through


Design Concept

Design Trades


Detailed Analysis

Polishing Experiments

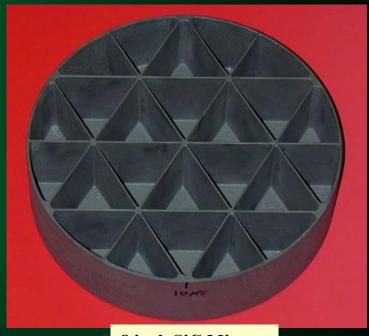


Pathfinder Fabrication

8 inch Diameter

Finished Part

20 inch Diameter, 20 kg/m^2


8 Inch Polishing Pathfinders

Polishing Study

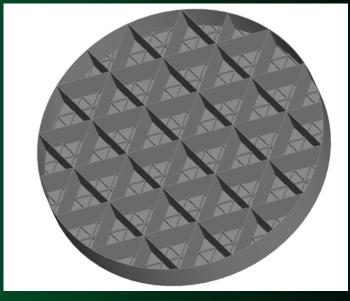
8 Inch Diameter Mirrors

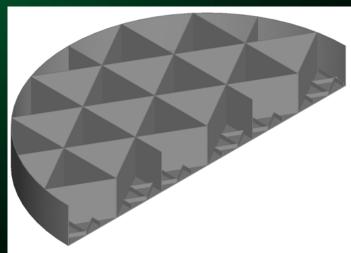
- Design Approach
 - 8" diameter
 - 2.112 overall thickness
 - 0.093 face thickness
 - 0.067 web thickness
 - 1.334 cell diameter
 - Open back
- ♦ Evaluate polish of lightweight SiC (~ 20kg/m²) and transfer lessons learned to 0.5m mirror design.

8 inch SiC Mirror

8 inch Mirror Polishing Evaluation

- Polishing Study
 - Blanks to go to polishing vendors
 - Evaluate results
 - Select vendors
 - Evaluate core substructure
 - Manipulate / evaluate microstructure
 - 4 Mirrors Fabricated and Delivered to 3 Polishing Vendors


0.5 Meter Mirror



0.5 Meter Mirror Concept

Design Approach

- Primary Ribs .040 inches thick
- Cathedral Ribs used to Increase Stiffness with Minimal Weight Penalty
- Facesheet .060 inches thick with 20 m radius of curvature
- Targeting 10 to 15kg/m² areal density

0.5 Meter Mirror Full Design

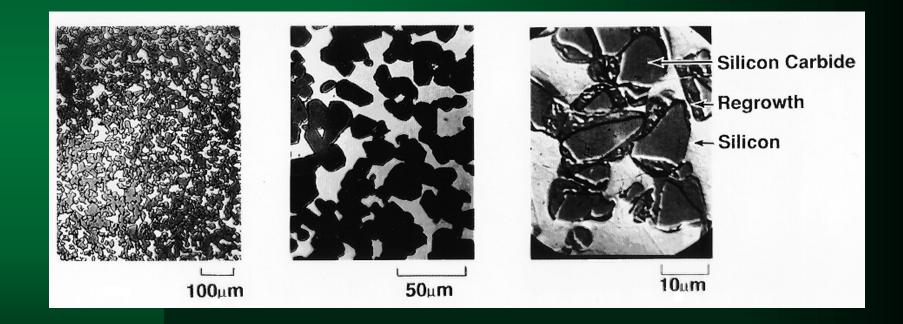
Plastic Model

- Full Scale Model Built by Plastic Writing Method
- Allows Full Scale Evaluation of Tooling and Fixturing
- Develop Polishing Process for 0.5 m
 Mirror

CERAFORM Process Development

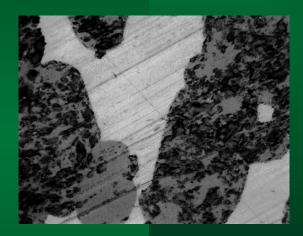
... Fluid Flow Models Tailor Areal Density

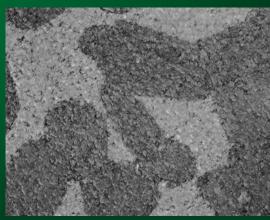
- Fluid Flow Pathfinders Used to Enable Large Scale Mirrors
- Software Being Used to Model Fluid Flow in Complex Molds
- Slurry Adjustments Made to Enhance Filling



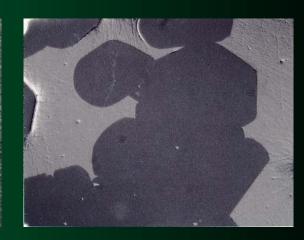
Polishing Bare Silicon Carbide

Microstructure of CERAFORM SiC


Bimodal Structure key to properties and polish


Ceraform SiC Polishing Process

Generating, grinding and polishing bimodal material

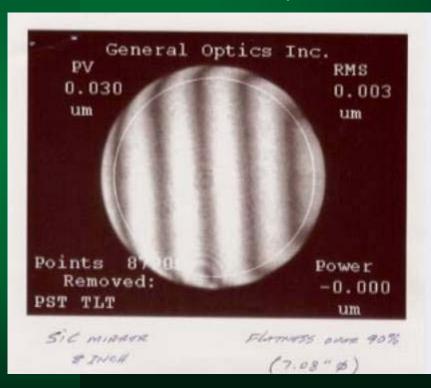

Generated Surface 1000x

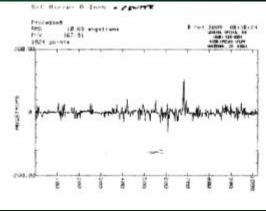
- Diamond fixed abrasive
- High removal rates

Precision Grind 1000x

- Loose abrasive hard laps
- Figure mirror surface

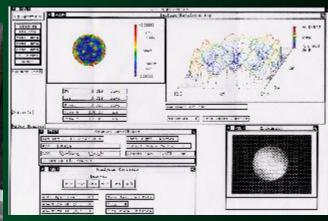
Finished Polish 1000x

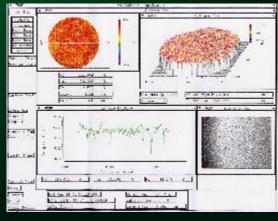

- Submicron diamond pitch laps
- Control slurry pH


Wave Precision – 8 –Inch Dia Bare SiC Polish

... Figure = $\lambda/33$ PV, Roughness = 11 Å rms; Cost = \$1500.

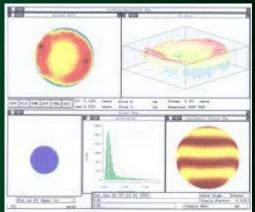
8" Diameter \$1500

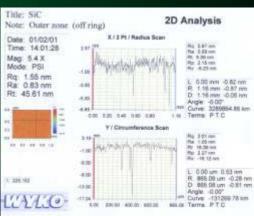




Zygo DOP – 8-Inch Dia Bare SiC Polish

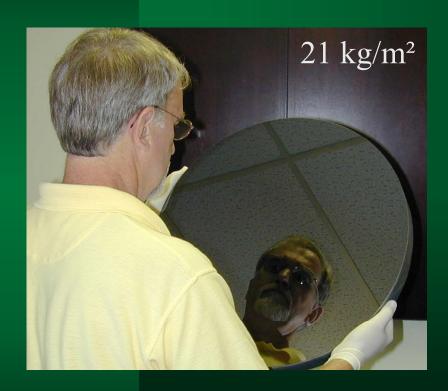
... Figure = $\lambda/17$ PV, Roughness = 11 Å rms; Cost = \$7650.

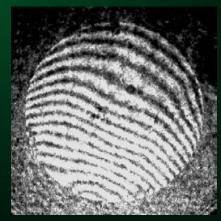




Eastman Kodak – 8-Inch Dia Bare SiC Polish

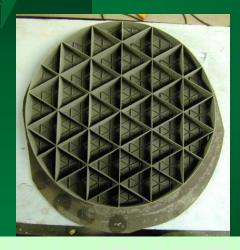
... Figure = $\lambda/7$ PV, Roughness = 15.5 Å rms; Cost = \$5625.




Eastman Kodak – 20-Inch Dia Bare SiC Polish

... Figure = 2.6λ PV, Roughness = 14-19 Å rms; Cost = \$45K

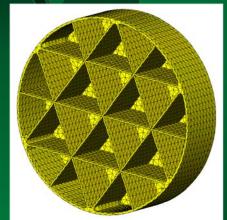
*Objective: achieve best surface finish on large part with limited budget and time.



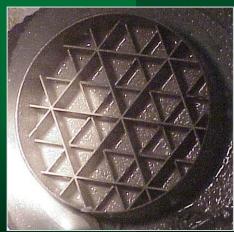
Silicon Carbide Polishing Developments

... High Material Removal Rates & Smooth Finishes

- 15Å rms Finish Routine on Bare SiC
- $\lambda/10$ PV Figure Routine on Bare SiC
- Spherical Removal Rate Established
- Small & Large Shops Evaluated Xinξtics Inc.

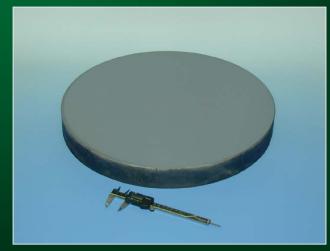


<u>Mirror</u>	Company	Polishing Method	Figure (PV.waves)	Surface Rough (A)	Cost
Previous	Zygo	Spindle	λ/17 PV	16 A rms	\$7650.
Program		Bare SiC			
8 inch #1	Zygo	Spindle + MRF (Bare)	λ/35 PV	Before 19 A rms MRF 181 A rms	N/A
8 inch #2	Wave Precision	Planetary Bare SiC	λ/33 PV (90%)	11A rms	\$1500.
8 inch #3	Wave Precision	Planetary Si Clad	λ/19 PV (90%)	2 A rms	\$2500.
8 inch #4	Kodak	Planetary Bare SiC	λ/7 PV	16 A rms	\$5625.
20 inch #1	Kodak	Spherical Bare SiC	TBD	TBD	\$45000.



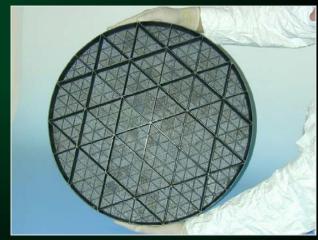
Large Low Temperature SiC Mirrors

Phase II Delivers 0.5m Silicon Carbide Mirror


Task 1: Design Trades

Task 3: Low Areal Density Process

Technology

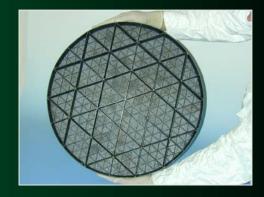

XinEtics Inc.

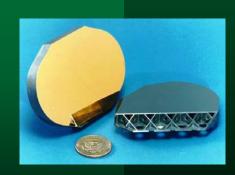
Task 5: 0.5 meter
Mirror Production and
Polish

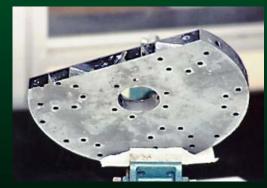
Task 2: 20 cm Polishing Pathfinders

Task 4: Rib Structure Development

Silicon Carbide Lightweight Mirrors


... Open and Closed Back Solutions to 2-Meters


Jerico Open Back Enabler 1.2-m Open Back


15-cm Cathedral Mirror Open Back

50-cm NASA Mirror Open Back

UTOS Closed Back Enabler Xinttics Inc.

30-cm ASCOT Mirror Closed Back

1.0-Meter ASCOT Mirror Closed Back